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It is now well-established that the liquid adjacent to a solid need not be stationary –
it can slip. How this slip occurs is unclear. We present molecular-dynamics (MD)
simulation data and results from an analytical model which support two mechanisms
of slip. At low levels of forcing, the potential field generated by the solid creates a
ground state which the liquid atoms preferentially occupy. Liquid atoms hop through
this energy landscape from one equilibrium site to another according to Arrhenius
dynamics. Visual evidence of the trajectories of individual atoms on the solid surface
supports the view of localized hopping, independent of the dynamics outside a local
neighbourhood. We call this defect slip. At higher levels of forcing, the entire layer slips
together, obviating the need for localized defects and resulting in the instantaneous
motion of all atoms adjacent to the solid. The appearance of global slip leads to
an increase in the number of slipping atoms and consequently an increase in the
slip length. Both types of slip observed in the MD simulations are described by a
dynamical model in which each liquid atom experiences a force from its neighbouring
liquid atoms and the solid atoms of the boundary, is sheared by the overlying liquid,
and damped by the solid. In agreement with the MD observations, this model predicts
that above a critical value of forcing, localized slipping occurs in which atoms are
driven from low-energy sites, but only if there is a downstream site which has been
vacated. Also as observed, above a second critical value, all the liquid atoms adjacent
to the wall slip. Finally, the dynamical equation predicts that at extremely large values
of forcing, the slip length approaches a constant value, in agreement with the MD
simulation results.

1. Introduction
The no-slip condition remains a trustworthy boundary condition for large-scale

Newtonian flows. However, it is now well-established that the liquid adjacent to a
solid can slip, i.e. have a non-zero velocity relative to the bounding solid (see the
reviews by Neto et al. 2005; Lauga, Brenner & Stone 2005; Bocquet & Barrat 2007).
Furthermore, for small-scale geometries this slip can be significant. Holt et al. (2006)
and Majumder et al. (2005) find that flow through their nanometre-diameter channels
is nearly frictionless. Flows through micro- and nano-scale channels offer possibilities
for sorting solute molecules by size and other properties. For example, semi-permeable
membranes have been used for years as a means of desalination. The utility of small
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pores to sort molecules by size and chemical properties is limited, however, by their
extremely high flow resistance. The presence of slip and concomitant reduced drag
offer the prospect of dramatically reduced energy costs that may make a wide range of
separation processes economically feasible (see Urbakh et al. 2004; Eijkel & van den
Berg 2005; Sholl & Johnson 2006).

Slip is often viewed from the perspective of its gross properties, such as slip length,
which is (as described below) an average over all the liquid molecules near the solid
boundary. For revealing the dynamics of slip, these averaged measures are ambiguous.
For example, the same slip length can arise due to the fast motion of a single liquid
molecule as well as from the slow downstream drift of many molecules. So, although
slip has been well-documented, the means by which slip occurs is virtually unknown.
The work described here presents evidence for particular molecular mechanisms. We
find that at low forcing, at any instant, slip is due to the motion of only a few
molecules which propagate along the liquid–solid interface as a localized nonlinear
mode: we call this ‘defect slip’. At high forcing, the means of motion is different: at
any time, all molecules adjacent to the boundary contribute equally to slip: we call
this ‘global slip’.

In § § 3.1–3.4, we present four types of molecular-scale evidence that at low forcing
slip is a due to localized defect motion: the existence of a ground state, the existence
of a transition state between ground states, visual molecular evidence of slip motion,
and measurements of the small fraction of interfacial atoms which contribute to slip.
We also find a second mechanism of slip, which makes its appearance at higher
forcing. Evidence for this global slip is presented in § § 3.3–3.5. In § 4 we review
a molecular-level dynamical model of slip and compare its predictions with our
simulation’s findings. The analytical model and simulation concur in showing (i) a
critical value of forcing required for the commencement of defect slip, (ii) a second
critical value marking global slip, and (iii) a high-forcing region over which the slip
length is constant. The paper concludes in § 5 with an overview of the findings. We
begin with a discussion of our molecular dynamics simulation methodology.

2. Simulation methodology
We used non-equilibrium molecular-dynamics (MD) simulations in a planar Couette

geometry. The walls consisted of atoms forming four planes of a face-centred-cubic
lattice, where each atom was tethered to its lattice site by a linear spring. The distance
between the mean centre of mass of the innermost wall atoms, or channel height, was
3 nm (with the exception of the data in the inset to figure 2). Periodic boundary con-
ditions were applied in the flow direction and transverse to the wall-normal direction.

The simulated liquid was n-decane using a united atom model (i.e. each molecule
is composed of ten monomers connected by rigid bonds) and allowing for both bond
bending and torsion. To avoid confusion with the n-decane molecule, each united
atom, or monomer, is referred to in the text simply as an atom.

In general, the liquid was sheared by moving the top and bottom bounding walls at
equal and opposite speeds ±U between 1 and 1000 m s−1. The one exception to this
was for the data collection used for figure 3, in which one wall was held stationary to
facilitate tracking of atoms. For consistency, all wall speeds are reported in a frame
of reference in which the walls move with equal and opposite speed U .

All non-bonded interactions were modelled using Lennard–Jones potentials
parameterized by energy ε and length σ scales. For interactions between two atoms
of the same type, the length parameters were σCH3

= 0.377 nm, σCH 2
= 0.393 nm, and
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σwall = 0.266 nm, and the energy parameters were εCH 3
/kB = 98.1K, εCH 2

/kB = 47.0 K,
and εwall/kB = 529.3 K, where kB is Boltzmann’s constant. Parameters for interactions
between different atom types were calculated using the Lorentz–Berthelot mixing
rules (hereafter subscripts LL and LS will indicate liquid–liquid and liquid–solid
interaction parameters, respectively). The liquid was allowed to heat up due to shear,
while the temperature of the walls was maintained at 300 K using a Nosé-Hoover
thermostat. Following equilibration, simulations were run with a time step of 10−6 ns
to a minimum duration of 1 ns.

A key factor that differentiates this study from others previously reported is that
the fluid density was determined using a grand canonical (i.e. constant temperature,
volume, chemical potential) Monte Carlo simulation. As the chemical potential, rather
than particle number, is fixed, the liquid is allowed to reach equilibrium in a way that
models the density that would be present if the channel were filled from a reservoir
at the given temperature. At a channel width of 3 nm, the simulation contained 96
n-decane molecules. Additional simulation details are given in Martini et al. (2006).

It is frequently observed that the continuum equations of fluid dynamics hold within
the interior of the liquid and that the slip speed is due entirely to a discontinuity in
speed between the wall and the adjacent liquid (see Thompson & Troian 1997). So,
the liquid atoms adjacent to the wall have a special status: we call these atoms the
first liquid layer. More precisely, we define the first liquid layer as being composed
of all liquid atoms whose centres of mass lie between the wall and the first minimum
in the average liquid density profile. Density and velocity profiles are calculated by
averaging the number and velocity of atoms in discrete ‘bins’ parallel to the channel
walls. The amount of slip is typically quantified in terms of the slip length, Ls = vs/γ̇ .
The mean shear rate, γ̇ , is determined by fitting a straight line to the average velocity
profile in the central part of the channel, where the central region includes all bins
except those lying within the first liquid layer. The slip speed, vs , is determined as the
difference between the wall speed and γ̇ extrapolated to the wall.

3. Molecular mechanisms of slip
3.1. The ground state

Liquid density varies tangentially along a solid surface with a length scale of
approximately the lattice spacing (see Thompson & Robbins 1990; Lichter, Roxin &
Mandre 2004). This density variation can be understood by noting that a liquid
molecule traversing at constant height over a solid surface would experience a
fluctuating potential as it passes over the lattice of discrete solid atoms (see Steele
1973). This inhomogeneous potential offers sites of low energy which the liquid atoms
preferentially occupy, leading to the observed variations in liquid density. Whether or
not this tangential variation plays an active role in the dynamics of slip can be tested
by determining whether it provides a measurable ground state for motion.

The ground state is the configuration of liquid atoms in the first liquid layer that
has a lower energy than any other configuration. Say there are N atoms in their
ground-state configuration. As this is the preferred configuration, diffusion from the
bulk into and out of the first liquid layer will be biased such that departures away
from N are discouraged. On the other hand, in the absence of a ground state, the
arrival and departure of liquid atoms at the solid surface are unbiased. The dynamics
of N can be made equivalent to a random walk by determining the change in N

from one time step to the next: changes of (+1, −1, 0) atoms are analogous to (right,
left, in-place) random steps, and so summing the changes in N is analogous to the
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Figure 1. Variance in the number of atoms in the first liquid layer as a function of time for
wall speeds of 10, 50, and 100 m s−1. The lines show a linear increase of variance with time, as
would be seen in the absence of a ground state. The symbols are the variance observed in the
MD simulations. After an initial rise following the appropriate line, the variance falls below
the line, as would be expected for diffusion in the presence of a ground state. See Appendix A
for the calculations used to determine the variance.

distance travelled in a random walk (see Appendix A). The simple random walk is
often portrayed as a drunk staggering to the right or left from a lamppost. When a
ground state is present, the biased diffusion can be envisioned as a drunk restrained
to the lamppost with an elastic tether, which pulls him back (to his ground state) as
he tries to wander too far. The liquid–solid interface, then, can be queried for the
presence of a dynamically active ground state by measurement of the variance in N:
if the dynamics of the adjacent liquid atoms are unaffected by the substrate potential,
then the variance in their number will increase linearly in time. If the presence of a
ground state affects the dynamics, the variance will be restrained such that, for long
enough time, it will be sublinear (Appendix A). Three representative data sets are
shown in figure 1. The variance in the number of liquid atoms adjacent to the solid
follows the linear prediction for short times, before a sufficient number of steps have
been taken to move far from the ground state: in the picturesque language of the
staggering drunk, the tether is not yet stretched. Given sufficient time, the variance
falls below the linear simple-random-walk prediction, revealing the presence of a
ground state.

The ground state is a prerequisite for a particular mode of molecular motion, the
propagation of defects, as we now discuss.

3.2. Liquid slip as a rate process

Let the low-energy positions occupied by each first-liquid-layer atom when in the
ground-state configuration be called equilibrium sites. Consider that the ground-state
configuration is altered by the removal – via diffusion into the bulk – of one atom
from its equilibrium site. If an atom from an adjacent equilibrium site now hops over
to fill this vacancy, a new vacant site is created at the location that it vacated. In
this way, liquid atoms can sequentially hop along the liquid–solid interface until the
ground state is restored by the diffusion of an atom from the bulk into the vacancy.
This is the basic process of defect slip. Precedent for this process can be found in
Tolstoi (see Blake 1990) and in a model of the advancing contact line (see Hoffman
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1983). (The ground state can also be perturbed by an additional atom which diffuses
from the bulk into the ground state. This case can be treated similarly to case of
a vacancy. Either the removal or the addition of an atom into the ground state –
generating either a vacancy or a crowding – creates what we refer to as a defect.)

On any real interface, or in any reasonably sized MD simulation, there will be
more than one vacancy which perturbs the ground state. However, if the vacancies
are sufficiently far apart, then each one propagates independently of the others. So,
it is sufficient to focus on the hopping of a single atom from one equilibrium site to
another, as can be modelled using transition-state theory (see Glasstone, Laider &
Eyring 1941; Lichter et al. 2007).

A liquid atom in its equilibrium site is assigned a Gibbs free energy, G = U+P V−
TS, where U is the internal energy, P is pressure, V is volume, T is temperature
and S is entropy. As a liquid atom moves from one equilibrium site to another, it
passes through a location of higher energy. The highest (lowest) energy encountered
is assigned G‡ (Go). The downstream hopping of an atom from one equilibrium site
to another is equivalent to the upstream hopping of a vacancy: as an atom hops into
an unoccupied downstream site, its upstream initial position becomes vacated.

The rate of hopping from one site to the other is given by ω ∝ exp(−�G‡/(kBT )),
where �G‡ =G‡ − Go (see Hanggi, Talkner & Borkovec 1990; Glasstone et al. 1941).
Each hop makes a contribution to the amount of slip. If there are many hops
simultaneously occurring over the surface of the solid, then the slip speed vs is given
by the mean number of vacancies times their mean rate of hopping, ω, times the
length per hop. For a given wall speed, as the channel height is varied, we assume
that the adiabatic component U and the entropic term TS are constant, leaving only
the pressure–volume contribution to the free energy change. We also assume that the
number of vacancies is at most weakly dependent on the pressure and shear rate, and
so find that vs ∝ ω (see Lichter et al. 2004). Then

vs(P )

vs(P0)
= exp

[
− (P − P0)�V‡

kBT

]
, (3.1)

where �V‡ is the change of volume between the transition state and the equilibrium
site, P is the solvation pressure for a given channel height, and P0 is a conveniently
chosen reference solvation pressure (see Lichter et al. 2007). Solvation pressure is
the excess above the isotropic bulk pressure of the normal pressure at the wall. In
nano-confined fluids it is non-zero, arising due to the distribution of the finite-sized
liquid molecules being altered by the presence of the solid (see Horn & Israelachvili
1981). The temperature and solvation pressure are measured for each channel height
between 1 and 3 nm from our simulation. To estimate the change in volume, we
follow Glasstone et al. (1941) and consider that the volume of the vacancy in the
transition state is smaller than that in the equilibrium site, hence the negative sign
in �V‡ = −f (4π/3)(σLS/2)3, where 0 � f . The value for f is a fitting parameter.
A comparison of the prediction from (3.1) to data is shown for a wall speed of
50 m s−1 in the inset of figure 2. Equation (3.1) does reasonably well in matching
both the amplitude and phase of the oscillatory variations in slip length with channel
height. This suggests that transition-state hopping is the dominant process at these
low forcings.

The fitting factor, f , in (3.1) is proportional to the size of the transition state.
For wall speeds up to about 100 m s−1, f remains sizeable, as expected when the
dominant means of slip is due to defects. At wall speeds above about 100 m s−1, the
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Figure 2. The fitting factor f from (3.1) as a function of wall speed. As shown in the inset
for a wall speed of 50 m s−1, (3.1) relates variations in slip length to the measured solvation
pressure P (h) by assuming that the liquid atoms hop along the liquid–solid interface by a
transition-state process. As described in the text, the factor f is proportional to the size of the
transition state. Estimates for the Peierls–Nabarro transitions to defect slip UPN and global
slip UGS , as determined in the text, are marked on the abscissa. O(1) values of f can be
expected throughout the range in which defect slip is the dominant mechanism of slip, as can
be seen on the figure. Above UGS global slip becomes the dominant mechanism of slip, and
here we find that there is no significant correlation between pressure and slip speed. This can
be explained by f → 0 as the wall speed increases, as speculated in the figure by a dashed line.

variations in slip speed with channel height become uncorrelated with the solvation
pressure and we can no longer determine f . This can be interpreted as there no
longer being a measurable transition state, suggesting that f goes to zero, as shown
by the dashed line in figure 2. The process which supersedes hopping at high wall
speeds is introduced in § 3.3.

3.3. Visual analysis

For wall speeds of 0.5, 5, 50, and 500 m s−1, individual atoms of the n-decane molecule
were tracked while they remained in the first liquid layer, see figure 3. These wall
speeds present different qualitative types of molecular motion. At the lowest wall
speed, there is very little slip (also illustrated in figure 5). As would be exactly true
in the no-slip case, an atom is nearly equally likely to move either upstream or
downstream. At a wall speed of 5 m s−1, the atoms remain in one equilibrium site,
shown by the nearly horizontal portions of its trajectory, but then rapidly move
to another site. The trajectories for three atoms, from different n-decane molecules,
are shown. Note that each atom’s movement is independent of the motion of the
other atoms. As the wall speed is increased to 50 m s−1, the atomic motion retains
some features similar to that seen at 5 m s−1. In particular, the motion of atoms on
different molecules is, at times, independent as the atoms alternate between resting in
their equilibrium sites and hopping downstream. However, at other times, the atoms
appear to move in a collective manner, all atoms slipping downstream at the same
speed. At the highest wall speed, 500 m s−1, the independent hopping of atoms is
overwhelmed. As indicated by the parallel trajectories, collective motion in which
all atoms persistently move downstream at the same speed becomes the dominant
motion. This is called global slip.
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Figure 3. Trajectories of atoms in the first liquid layer relative to the wall for wall speeds
of 0.5m s−1, 5 m s−1, 50 m s−1, and 500m s−1. The horizontal dotted lines show the spacing
of the solid atoms of the wall. Horizontal portions of the trajectory signify that the atom is
stationary relative to the wall. A single trajectory is shown for 0.5 m s−1; the three trajectories
at the higher wall speeds are from non-neighbouring atoms on different n-decane molecules.
Some trajectories have been shifted vertically for clarity. At the lowest wall speed, the atoms
are nearly equally likely to move upstream or downstream. At a wall speed of 5 m s−1, the
atoms alternate between remaining nearly stationary and moving downstream. At 50 m s−1,
the intervals of downstream motion increase. At 500 m s−1, all atoms move with equal speed
over the solid, yielding parallel trajectories.
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Figure 4. Long-time averages of the percentage of atoms in the first liquid layer that are
moving downstream at a given wall speed. Symbols correspond to simulation data while the
solid line represents a logistic function of the form 0.5 − 0.5/(1 + (U/U0)

α) where the centre
point, U0 = 148m s−1 and the exponent, α = 1.53 are fitted to the data using nonlinear least
squares. The estimates for the transitions to defect slip UPN and global slip UGS , as determined
in the text, are marked on the abscissa.

3.4. Percent participation

For the no-slip condition, the average atomic motion should be 50 % downstream and
50 % upstream. In the other extreme of global slip, the average atomic motion should
approach 100 % downstream movement. Defect slip should take place with some
percentage between these limits. These predictions are validated by the simulation
data shown in figure 4. We interpret the initial increase in percentage of downstream
motion as due to defect slip. Note that, due to our measurement technique, even if
an atom is confined to oscillate about an equilibrium position, it would alternately be
considered as part of the forward or backward population of atoms as it oscillated.
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Figure 5. Slip length as a function of wall speed. As an aid to the eye, a straight line
is fitted to the data for U � 20 m s−1. To compare with the vdFK prediction that the slip
length approaches a constant value at high forcing, a line of zero slope is fit to the data
for U � 20 m s−1. The estimates for the transitions to defect slip UPN and global slip UGS , as
determined in the text, are marked on the abscissa. The maximum error in the slip length
calculation for U > 20 m s−1 is indicated by the error bar.

By comparing figures 2 and 4, it can be seen that measurable values of f , indicative
of defect slip, occur in the interval of wall speeds within which the percentage of
downstream motion begins to rise. Within this range of wall speeds, the percentage
of atoms engaged in slip remains small, consistent with the view of defect slip as a
localized disturbance in which most atoms remain oscillating about their equilibrium
positions and do not slip. On the other hand, at a wall speed of several hundred
m s−1, the percentage approaches 100 %, consistent with the view of global slip shown
in the final frame of figure 3. Now, vacancies are no longer needed for slip and so we
expect that f should decrease to zero in this range, as was shown in figure 2.

3.5. Slip length

The slip length was calculated as a function of wall speed, as shown in figure 5. The
slip length increases with wall speed for speeds up to about 20 m s−1, and thereafter
appears to remain relatively constant.

4. Frenkel–Kontorova model for liquid slip
Previously, we introduced a theoretical model for slip (see Lichter et al. 2004) which

describes the dynamics of the atoms in the first liquid layer of a two-dimensional
flow,

mẍi = −2πg

λ
sin

(
2πxi

λ

)
+ k(xi+1 − 2xi + xi−1) + ηLL(V − ẋi) − ηLSẋi . (4.1)

Reading the equation from left to right, we find that the mass m times acceleration
ẍi of the ith atom along the x-direction is due to the force caused by a potential
field of strength g which arises from the linear array of solid atoms with spacing λ
(see Appendix B), the interactions of strength k from the nearest-neighbour liquid
atoms at i + 1 and i − 1, the force due to shear from the liquid layer above, which is



Molecular mechanisms of liquid slip 265

moving at speed V = γ̇ (h/2 − 2d), and finally, the force due to friction, with friction
coefficient ηLS , due to slip along the wall. The strength of the liquid–liquid interaction
k is determined by fitting a quadratic potential to the liquid–liquid Lennard–Jones
potential. It is found that k = 72εLL/(24/3σ 2

LL). The coefficient ηLL ≡ μ(A/d)/N is the
bulk viscosity μ times a coefficient to apportion the continuum viscosity coefficient
to the discrete liquid atoms, where A/N is the area per liquid atom in the first liquid
layer, and d is the liquid–liquid spacing normal to the surface.

Equation (4.1) is a form of the well-known Frenkel–Kontorova equation which
models the interaction of two lattices (see Braun & Kivshar 1998). What is novel in
this application to liquids, is that the set of atoms i changes in time as atoms diffuse
into and out of the first liquid layer. This diffusion is incorporated into the model
by stochastically adding or removing atoms (see Lichter et al. 2004). The diffusion
changes the number of liquid atoms instantaneously in the system, so we call the
complete set of equations the variable-density Frenkel–Kontorova (vdFK) model. The
vdFK model can be solved numerically or approximated analytically (see Braun &
Kivshar 1998; Roxin 2004). At low values of the forcing parameter V , there are no
propagating solutions as the liquid atoms become trapped near the minima of the
solid potential. For higher values of the forcing, soliton solutions of propagating
localized modes appear. At still higher forcing levels, the entire first liquid layer
can slip. There are well-defined transitions (see Braun & Kivshar 1998) between the
occurrence of non-propagating solutions, solitons, and global slip, which we now
compare with our MD observations.

4.1. The transition to global slip

The vdFK equation predicts a transition to global slip in which all atoms move
with nearly constant speed. Consequently, the acceleration term in (4.1) drops out. In
addition, adjacent atoms keep their relative displacement so there is no contribution
to the force from intermolecular interactions. Furthermore, just at the transition, the
speed is small. Hence, the terms remaining in (4.1) yield the criterion for transition,
namely that the forcing term balances the substrate potential,

VGS =
2πg(l)

ληLL

, (4.2)

where l is the height of the first liquid layer (see Appendix B). We find that this value
of forcing VGS occurs at a wall speed UGS � 170 m s−1, which is marked on figures 2, 4
and 5. The vacancy volume, as measured by f , is an intrinsic part of defect slip, but
does not play a necessary role in global slip. Hence, we would expect that UGS should
occur in the region where f falls off rapidly, as is observed in figure 2. Global slip
involves all the liquid atoms adjacent to the boundary. Therefore, at the transition, we
would expect that there is a rapid rise in the percentage of the atoms moving forward.
The value of UGS , as marked on figure 4 bears this out. The value for UGS compares
well with the value U0 = 148 m s−1 found from the logistic fit to the figure 4 data.
And, lastly, we see that the parallel trajectories indicative of global slip in figure 3
occurs at U = 500 m s−1, above the predicted transition to global slip.

There are two caveats to keep in mind in interpreting this transition and the one
to be discussed below in § 4.2. First, the liquid atoms adjacent to the boundary are
not all at precisely the same height, but rather there is a range of heights. We find
that the density peak nearest to the wall (located at l = 0.34 nm for the case shown in
figures 2 and 4) has a width of ±0.035 nm at half-height. Atoms at different heights l

will experience a different amplitude of substrate potential, which we explicitly show
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by writing g(l) in (4.2). This distribution of heights will lead to a distribution of values
for UGS . So, the single value presented is only indicative of where the transition lies.
Secondly, the vdFK equation (4.1) treats the dynamics of the liquid atoms as if flow
were one-dimensional. However, the MD simulations are for a full three-dimensional
liquid. Once again, this suggests that the values derived from the vdFK model should
not be used as a quantitative measure, but only as a guide.

4.2. The transition from no-slip to defect slip

The transition to defect slip, within the context of FK equations, is called a Peierls–
Nabarro transition (see Braun & Kivshar 1998; Zhu & Granick 2002 also give
experimental evidence in support of a transition from no-slip to slip). The forcing
required for this transition is less than that for global slip, discussed above, due to
the helpful contribution of forces from nearest-neighbour liquid–liquid interactions.
The critical forcing needed for defect slip can be simply estimated, in the limiting
case of small forcing and where the liquid size is commensurate with the solid lattice
spacing, as follows (see Florı́a & Mazo 1996). Consider liquid atoms each occupying a
low-energy equilibrium site at the bottom of the periodic solid potential. This regular
placement is then locally perturbed by the departure, into the bulk, of a single liquid
atom, creating a vacancy at one equilibrium site. The liquid atom just upstream of
the vacancy can hop into it while all other liquid atoms remain nearly stationary. To
hop from one equilibrium site to another, an isolated atom, or equivalently an atom
with no liquid–liquid interactions (i.e. k = 0), would need the forcing as calculated in
the previous section for the global slip transition. Here, however, the vacancy leads
to an imbalance of the liquid–liquid forces. Hence, the dominant balance within (4.1)
is among the terms accounting for the solid potential, the forcing, and, additionally,
the liquid–liquid interaction. The liquid–liquid term needs to properly account for the
perturbation in the configuration of the ground state due to the changes in position of
the atoms neighbouring the vacancy. Accounting for these changes, Braun, Kivshar &
Zelenshkaya (1990) report that the value at which defect slip occurs is less than that
for global slip by a factor χPN = 1 − kλ2/(8g). This factor accounts for the nearest-
neighbour interaction energy ∝ (1/2)kλ2. So χPN → 1 as k → 0, recovering the global
slip prediction.

The value for the Peierls–Nabarro transition is strictly valid only for the case in
which the number of atoms is fixed. Furthermore, it relies on the forcing V in (4.1)
being a fixed value. Neither of these conditions holds for a simulation or at a real
boundary: vacancies are transitory, being created and annihilated as atoms depart or
arrive from the bulk, and the forcing will fluctuate. We assume then, in using this
value, that the vacancies are long-lived and (as noted in § 3.2) widely separated. And,
we assume that using the mean value of V is representative of the fluctuating forcing.

The onset of defect slip, as for global slip, is expected over a range of wall speeds,
due to the distribution of heights of the atoms in the first liquid layer. Here, we
calculate the lowest value at which defect slip might be expected. (This suits the
derivation for χPN , which is only valid for small V .) As those atoms held most weakly
by the substrate will slip first, we evaluate UPN =χPN (l)UGS (l) at the height l at
the outer edge of the first liquid layer, namely at (the location of the peak density,
0.34 nm) + (the half-width, 0.035 nm) yielding UPN � 10 m s−1. This value is marked
on figures 2, 4 and 5. It has the same order of magnitude as the observed onset of
slip, but is higher than the observed onset in figure 5. As noted above, the vdFK
model uses a one-dimensional solid surface in which the liquid atoms must pass over
the maximum of the substrate potential in hopping from one equilibrium site to
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another. In the MD simulation over a two-dimensional solid surface, liquid atoms
can sidestep the maximum of the substrate potential. So, it can be expected that, as is
the case here, the vdFK prediction overestimates the forcing required from the MD
simulations.

4.3. As the forcing becomes large, the slip length asymptotes to a constant value

At very large forcing, the final two terms of (4.1) dominate, leading to the result
vs = ηLLV/(ηLL + ηLS) where, since all atoms have the same velocity, the individual
ẋi have been replaced by vs . After using the definition of the slip length from § 2 and
approximating the shear rate with γ̇ = (V − vs)/d , we find

Ls =
ηLL

ηLS

d. (4.3)

(It is a technical point that d , the distance between the first and second liquid layers,
is differentiated from l, the distance to the first peak of the density; in fact, they
are nearly equal in value (see also Koplik, Banavar & Willemsen 1989).) The slip
length, then, should asymptote to a constant value in the limit of high forcing. We
see from figure 5 that the slip lengths measured from the MD simulations agree with
this prediction. In order to quantitatively compare the value predicted by (4.3) to the
simulation results, (4.3) is evaluated using the length l and the bulk viscous coefficient
ηLL; it is difficult to determine a precise value for ηLS (see Sokhan, Nicholson &
Quirke 2001), though it is often found to be within an order of magnitude less than
ηLL and is at most equal to ηLL. So, it is reasonable to expect 1 � Ls/l � 10. (But,
in some cases ηLS � ηLL, as in carbon nanotubes (see Majumder et al. 2005).) The
best-fit zero-slope line to the data for U > 20 m s−1 is Ls/l = 5.2 (Ls =1.75 nm) which
is within this predicted range.

5. Conclusions
That slip occurs in nano- and micro-scale liquid flows has been established by

many experimental and computational studies. The work here presents evidence for
the molecular mechanisms by which this slip occurs. In one form of slip, liquid atoms
hop along the solid surface from one equilibrium site to another, passing through a
higher-energy transition state. The equilibrium sites compose the ground state, which
is shown to exist by measuring the variance. The hopping process follows Arrhenius
dynamics, as expected for a rate process between equilibrium sites. Visual evidence
indicates localized motion, as expected for a hopping process. Only a small percentage
of the liquid atoms are hopping at any instant, validating the rate-process approach,
which assumes that each rate process is affected only by the local dynamics. A second
mechanism, global slip, relies on the participation of the entire liquid layer. The
signature of this mode of slip is parallel trajectories of all the liquid atoms, as is
observed at high enough forcing.

The vdFK model describes the dynamics of liquid atoms adjacent to a solid surface.
It predicts a bifurcation at low forcing from no-slip to the solitonic propagation of
defects over a corrugated potential. There is a second critical value of forcing past
which there is global motion of the entire layer. The MD simulations qualitatively
agree with the predictions of these transitions. The vdFK equation further predicts
that the slip length should approach a constant value at extremely high levels of
forcing, also in agreement with the MD data.

Though liquids are characterized by their disorder, the lattice of discrete solid atoms
at a boundary induces order, tangentially along its surface, on the adjacent liquid.
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This order needs to be strict enough to generate a ground state, yet fluid enough to
permit the propagation of defects and the slipping of the entire layer. We imagine that
the liquid–solid interface will continue to reveal a panoply of interesting behaviours
arising from the balance of order and disorder.

The authors are grateful to the National Science Foundation for both financial
support through the IGERT Program and computation support through TeraGrid
resources provided by NCSA.

Appendix A. The random walk with a ground state
The number of atoms M in the first liquid layer is measured at each time step �t

for a total time t consisting of Nt = t/�t steps. The time step is chosen so that the
change in M is +1, −1, or 0, with other values rarely occurring. R realizations are
generated so the value (+1, −1, or 0) at each time step can be placed as the entry
aij in an Nt × R matrix. Taking the cumulative total of aij after time i�t generates

a new Nt × R matrix with entries bij =
∑i

k =1 akj . At each time step, the variance

Vari =
∑R

j =1(bij − (1/R)
∑R

j =1 bij )
2/R is computed.

If (+1, −1, 0) occur with fixed probabilities (p, q, τ ), where τ = 1 − p − q , then
the variance increases linearly in time according to Vari = 4ipq/(1 − τ ). On the
other hand, if there is a ground-state configuration then diffusion into and out of
the first liquid layer will be affected. Consider that the first liquid layer is in its
ground-state configuration, that is, at its lowest energy. Removing atoms from the
ground-state configuration incrementally increases the energy. Hence, the cumulative
total bij measures the distance from the energy minimum. In the limit of many
steps, the discrete changes in bij can be modelled by a continuous distance x via the
Smoluchowski equation,

∂P
∂t

=
∂

∂x

(
P∂φ

∂x

)
+

∂2P
∂x2

, (A 1)

for the probability P(x, t) of being distance x from the energy minimum of a potential
φ. Note that, on the infinite line, for a constant potential, there is no steady-state
solution, and P(x, t) continues to evolve and flatten out, leading to a linear increase
in variance. On the other hand, if there is a ground state, which is most simply solved
using a quadratic potential, then (A 1) has a steady-state solution. A time-invariant
solution has time-invariant statistical measures, in particular a constant variance.

Appendix B. Amplitude of the wall potential
The amplitude of the wall potential, g, which appears in (4.1), is determined by

first computing the potential at a point (x, l) a distance l above the solid array of
Lennard–Jones atoms spaced λ in x and s in y,

VLJ (x) = 4εLS

ML∑
i=0

M∑
j=−M

[(
σ

rji

)12

−
(

σ

rji

)6
]

, (B 1)

where r2
ji = (x − jλ)2 + (l + is)2. The index j counts the 2M atoms along a particular

layer, i indexes the ML layers which are separated by distance s. The coefficients in
(B 1) are the MD simulation parameters, as given in § 2. The cosine transform of
VLJ (x) is computed and the coefficient for the lowest mode is set equal to g.
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